Самодельная индукционная катушка румкорфа. Ручная намотка и расчет индуктивности катушек «Универсаль Установка КВ катушки в радиоприемник


Каждый любитель мастерить электронные приборы и , не раз сталкивался с необходимостью намотать катушку индуктивности или дроссель. В схемах конечно указывают число намотки катушки и каким проводом, но что делать если указанного диаметра провода нет в наличии, а есть намного толще или тоньше??

Я расскажу вам как это сделать на моем примере.
Хотел я сделать вот эту схему . Намоточные данные катушек в схеме указаны (6 витков провода 0.4 на каркасе 2мм) эти намоточные данные соответствуют 47nH-нано Генри, все бы нормально но провод у меня был 0.6мм. Помощь я нашел в программе Coil32.

Открываем программу


В низу мы видим что в программе можно вычислить практически любую катушку. Стоит только выбрать из списка нужную, выбираем (однослойную катушку виток к витку)


Заходим в настройки и нажимаем Опции


В появившемся окне выбираем нГн


Возвращаемся к нашей схеме, например я вам не говорил какая индуктивность катушек и у вас есть только намоточные данные, как же нам теперь узнать какая же их индуктивность??

Для этого вставляем в окошки известные нам данные этих катушек, длину намотки подбираем до тех пор пока вычисления не совпадут с нашими данными.


И так вычисления показали что длина намотки 3.1мм при 6-и витках провода 0.4,на оправке 2мм. а индуктивность 47нГн.
Теперь ставим диаметр нашего провода 0.6мм.


Но теперь индуктивность маленькая, значит начинаем увеличивать например длину намотки, получилось 5.5мм


Вот и все, катушка готова.

Но если вы например уже вытравили платы, а размер контактов для катушки остался прежним, то есть для катушки с длиной намотки 3мм, а у вас же получилась на 5.5мм (намного больше и впаять рядом 3 таких катушки будет проблематично)

Значит нужно нашу катушку уменьшить, ставим в окошко диаметр каркаса не 2мм, а 4мм. И наша катушка с проводом 0.6мм, уменьшается в длине с 5.5мм до 3мм и число витков 3.5, +/- 1-2 нГн роли большой не сыграет, зато мы сможем легко впаять наши индуктивности.


Вот и все, надеюсь моя статья поможет вам. В этой программе можно рассчитывать разные катушки, выбирайте из списка какая вам нужна и все у вас получится.

Катушка индуктивности как радиоэлектронный элемент, достаточно распространена. Порой не заменима, для настройки многих радиоприёмников и применяется во многих устройствах. Следует отметить, что для эксклюзивных вещей, порой не достать эксклюзивных катушек, потому необходимо знать не только устройство катушки индуктивности, и формулы её расчёта, но и уметь мастерить катушки индуктивности самостоятельно. В этой статье любой начинающий радиолюбитель найдёт для себя пару полезных советов.

Катушка индуктивности:

По своей конструкции катушки индуктивности очень сильно разнятся, толщина провода, количество витков, способ намотки, наличие сердечника – всё это влияет на индуктивность катушки рисунок №1,2.


Рисунок №1 – Пример катушки индуктивности

В случае, когда вам необходима маленькая индуктивность, можно даже сделать её плоской рисунок№2. Например, вытравить её непосредственно на плате.


Рисунок №2 – Пример плоской катушки индуктивности

Как залить катушку индуктивности воском:

Собирая схему, в которой есть колебательный контур, настраивая радиоприёмник или передатчик (что угодно) или делая любую другую схему (наматывая, например, высоковольтные катушки). Вам необходимо регулировать расстояние между витками катушки. Когда вы настроили вашу схему, то для исключения не желательного изменения параметров катушки из-за механического смещения витков, вам достаточно просто залить катушку обыкновенным воском или парафином (если катушка не греется) рисунок №3.


Рисунок №3 – Пример залитой воском катушки

Можно заливать катушки эпоксидной смолой или силиконом – всё зависит от того в каких условиях должна работать ваша катушка индуктивности. И что находится у вас под рукой. В случае с воском (парафином), вам достаточным будет растопить его и просто дождаться его остывания предварительно опустив в него катушку индуктивности.

Катушки индуктивности предназначены для фильтрации токов высокой частоты. Они устанавливаются в колебательных контурах и используются для других целей в электрических и электронных схемах. Готовое устройство заводского изготовления надёжнее в работе, но дороже, чем изготовленное своими руками. Кроме того, не всегда удаётся приобрести элемент с необходимыми характеристиками. В этом случае расчёт катушки индуктивности и само устройство можно сделать самостоятельно.

Конструкция катушки

Каркас устройства изготавливается из диэлектрика. Это может быть тонкий (нефольгированный) гетинакс, текстолит, а на тороидальных сердечниках –просто обмотка из лакоткани или аналогичного материала.

Обмотка выполняется из одножильного или многожильного изолированного провода.

Внутрь обмотки вставляется сердечник. Он изготавливается из железа, трансформаторной стали, феррита и других материалов. Он может быть замкнутым, тороидальным (бублик), квадратным или незамкнутым (стержень). Выбор материала зависит от условий работы: частоты, магнитного потока и других параметров.

Протекающий по проводу электрический ток создаёт вокруг него электромагнитное поле. Соотношение величины поля к силе тока называется индуктивностью. Если провод свернуть кольцом или намотать на каркас, то получится катушка индуктивности. Её параметры рассчитывают по определённым формулам.

Расчёт индуктивности прямого провода

Индуктивность прямого стержня – 1-2мкГн на метр. Она зависит от его диаметра. Точнее можно рассчитать по формуле:

L=0.2l(logl/d-1), где:

  • d – диаметр провода,
  • l – длина провода.

Эти величины нужно измерять в метрах (м). При этом результат будет иметь размерность микрогенри (мкГн). Вместо натурального логарифма ln допустимо использовать десятичный lg, который в 2,3 раза меньше.

Предположим, что какая-то деталь подключена проводами длиной 4 см и диаметром 0,4 мм. Произведя при помощи калькулятора расчет по выше приведённой формуле, получаем, что индуктивность каждого из этих проводов составит (округлённо) 0,03 мкГн, а двух – 0,06 мкГн.

Ёмкость монтажа составляет порядка 4,5пФ. При этом резонансная частота получившегося контура составит 300 МГц. Это диапазон УКВ.

Важно! Поэтому при монтаже устройств, работающих в частотах УКВ, длину выводов деталей нужно делать минимальной.

Расчёт однослойной намотки

Для увеличения индуктивности провод сворачивается кольцом. Величина магнитного потока внутри кольца выше примерно в три раза. Рассчитать её можно при помощи следующего выражения:

L = 0,27D(ln8D/d-2), где D – диаметр кольца, измеренный в метрах.

При увеличении количества витков индуктивность продолжает расти. При этом индукция отдельных витков влияет на соседние, поэтому получившиеся параметры пропорциональны не количеству витков N, а их квадрату.

Дроссель с сердечником

Параметры обмотки, намотанной на каркас, диаметром намного меньше длины рассчитывается по формуле:

Она справедлива для устройства большой длины или большого тора.

Размерность в ней дана в метрах (м) и генри (Гн). Здесь:

  • 0 = 4 10-7 Гн/м – магнитная константа,
  • S = D2/4 – площадь поперечного сечения обмотки, магнитная проницаемость магнитопровода, которая меньше проницаемости самого материала и учитывает длину сердечника; в разомкнутой конструкции она намного меньше, чем у материала.

Например, если стержень антенны изготовить из феррита с проницаемостью 600 (марки 600НН), то у получившегося изделия она будет равна 150. При отсутствии магнитного сердечника = 1.

Для того чтобы использовать это выражение для расчёта обмоток, намотанных на тороидальном сердечнике, его необходимо измерять по средней линии “бублика”. При расчёте обмоток, намотанных на железе Ш-образной формы без воздушного зазора, длину пути магнитного потока измеряют по средней линии сердечника.

В расчёте диаметр провода не учитывается, поэтому в низкочастотных конструкциях сечение провода выбирается по таблицам, исходя из допустимого нагрева проводника.

В высокочастотных устройствах, так же как и в остальных, стремятся свести омическое сопротивление к минимуму для достижения максимальной добротности прибора. Простое повышение сечения провода не помогает. Это приводит к необходимости наматывать обмотку в несколько слоёв. Но ток ВЧ идёт преимущественно по поверхности, что приводит к увеличению сопротивления. Добротность в высокочастотных элементах растёт вместе с увеличением всех размеров: длины и диаметров обмотки и провода.

Максимальная добротность получается в короткой обмотке большого диаметра, с соотношением диаметр/длина, равным 2,5. Параметры такого устройства вычисляются по формуле:

L=0.08D2N2/(3D+9b+10c).

В этой формуле все параметры измеряются в сантиметрах (см), а результат получается в микрогенри (мкГн).

По этой формуле рассчитывается также плоская катушка. Диаметр “D” измеряется по среднему витку, а длина “l” по ширине:

Многослойная намотка

Многослойная намотка без сердечника вычисляется по формуле:

L=0.08D2N2/(3D+9b+10c).

Размеры здесь измеряются в сантиметрах (см), а результат получается в микрогенри (мкГн).

Добротность такого устройства зависит от способа намотки:

  • обычная плотная намотка – самая плохая, не более 30-50;
  • внавал и универсал;
  • “сотовая”.

Для увеличения добротности при частоте до 10 мГц вместо обычного, одножильного провода, можно взять литцендрат или посеребренный проводник.

Справка. Литцендрат – это провод, скрученный из большого количества тонких изолированных друг от друга жил.

Литцендрат имеет большую поверхность, по сравнению с одножильным проводником того же сечения, поэтому на высоких частотах его сопротивление ниже.

Использование сердечника в высокочастотных устройствах повышает индуктивность и добротность катушки. Особенно большой эффект даёт использование замкнутых сердечников. При этом добротность дросселя зависит не от активного сопротивления провода, а от проницаемости магнитопровода. Рассчитывается такой прибор по обычным формулам для низкочастотных устройств.

Сделать катушку или дроссель можно самостоятельно. Перед тем, как её изготавливать, необходимо рассчитать индуктивность катушки по формулам или при помощи онлайн-калькулятора.

Видео

Расчет и изготовление катушки индуктивности, дросселя. Типовые электронные схемы с дросселями. Как сделать индуктор своими руками (10+)

Дроссель, катушка индуктивности - Проектирование, изготовление, применение

Изготовление дросселя

Сначала определимся с материалом магнитопровода (сердечника). Если частота больше 10 кГц, то используем ферриты, если меньше 3 кГц, то железо, если между этими значениями, то решаем, исходя из конкретных условий.

Дросселя изготавливаются с зазором в сердечнике. Правильная толщина зазора в сочетании с нужным числом витков обеспечивает нужные параметры дросселя.

Вашему вниманию подборка материалов:

Реактивное сопротивление катушки индуктивности

Идеальная катушка индуктивности не обладает классическим омическим сопротивлением, сопротивление дросселя постоянному току равно нулю. Но если к катушке индуктивности приложить переменное напряжение, то за счет периодического накопления энергии в магнитном поле и последующей отдачи ее, в цепи будет протекать конечный ток.

Причем ток через дроссель не зависит от напряжения в текущий момент, а зависит от истории изменения напряжения, то есть определяется первообразной напряжения от времени. Так, если на дроссель подано синусоидальное напряжение, то ток будет иметь форму минус косинуса. Именно благодаря такому фазовому сдвигу на идеальной катушке индуктивности не рассеивается тепловая энергия.

На реальных катушках индуктивности и в цепях вокруг них тепловая энергия, конечно, рассеивается, так как все они обладают ненулевым омическим сопротивлением. Именно на нем и рассеивается мощность.

Если рассматривать синусоидальное напряжение и оперировать понятиями действующего напряжения и тока, то можно написать формулу, напоминающую закон Ома для резисторов. [Действующий ток через дроссель ] = [Действующее напряжение на дросселе ] / [Z ], где [Z ] = (2 * ПИ * [Частота напряжения ] * [Индуктивность дросселя ]). Эта формула полезна при расчете индуктивных делителей переменного напряжения и фильтров высших и низших частот.

Особенности применения дросселей в схемах

Дроссели можно соединять последовательно и параллельно.

[Индуктивность последовательно соединенных дросселей ] = +

[Индуктивность параллельно соединенных дросселей ] = 1 / (1 / [Индуктивность первого дросселя ] + 1 / [Индуктивность второго дросселя ])

На рисунке приведены типовые схемы на катушках индуктивности. (А) - Индуктивный делитель переменного напряжения. [Напряжение на нижнем дросселе ] = [Входное напряжение ] * / ([индуктивность нижнего дросселя ] + [индуктивность верхнего дросселя ]) (Б) - Фильтр высших частот. (В) - Фильтр низших частот.

К сожалению в статьях периодически встречаются ошибки, они исправляются, статьи дополняются, развиваются, готовятся новые. Подпишитесь, на новости , чтобы быть в курсе.

Если что-то непонятно, обязательно спросите!
Задать вопрос. Обсуждение статьи. сообщений.

А что такое E в первой формуле, прямо таки получается огромная величина индукти вности. В первой формуле правдоподобно, если индуктивность в микрогенри Если я правильно понял, то, например, E-3 означает 0.001?

Для того, чтобы создать магнитное поле и сгладить в нем помехи и импульсы, используются специальные накопительные элементы. Катушки индуктивности в цепи переменного тока и постоянного применяются для накопления определенного количества энергии и ограничения электричества.

Конструкция

Главное назначение катушек индуктивности ГОСТ 20718-75 – это накопление электрической энергии в пределах магнитного поля для акустики, трансформаторов и т. д. Их используют для разработки и конструирования различных селективных схем и электрических устройств. От конструкции (материала, количества витков), наличия каркаса зависит их функциональность, размеры и область использования. Изготовление устройств производится на заводах, но можно сделать их самостоятельно. Самодельные элементы несколько уступают по надежности профессиональным, но обходятся в разы дешевле.

Фото – схема

Каркас катушки индуктивности выполняется из диэлектрического материала. На него наматывается изолированный проводник, который может быть как одножильным, так и многожильным. В зависимости от типа намотки, они бывают:

  1. Спиральными (на ферритовом кольце);
  2. Винтовыми;
  3. Винтоспиральными или комбинированными.

Примечательной особенностью катушки индуктивности для электрических схем является то, что её можно намотать как в несколько слоев, так и нированно, т. е., с обрывками Если используется толстый проводник, то элемент может обматываться без каркаса, если тонкий – то только на рамку. Эти каркасы катушек индуктивности бывают различного сечения: квадратные, круглые, прямоугольные. Полученная намотка может вставляться в специальный корпус какого-либо электрического устройства или использоваться в открытом виде.


Фото – конструкция самодельного элемента

Для увеличения индуктивности используются сердечники. В зависимости от назначения элемента, варьируется используемый материал стержня:

  1. С ферромагнитным и воздушным сердечником применяются при высоких частотах тока;
  2. Стальные используются в условиях низкого напряжения.

Исходя из принципа работы, бывают такие типы:

  1. Контурные. Преимущественно используются в радиотехнике для создания колебательных контуров платы, работают вместе с конденсаторами. Для соединения используется последовательное подключение. Это современный вариант плоской контурной катушки Тесла;
  2. Вариометры. Это высокочастотные перестраиваемые катушки, индуктивностью которыми можно при необходимости управлять при помощи дополнительных устройств. Они представляют собой соединение двух отдельных катушек, при этом, одна подвижна, а вторая нет;
  3. Сдвоенные и подстроечные дроссели. Основные характеристики этих катушек: малое сопротивление постоянному току и высокое переменному. Дроссели изготавливаются из нескольких катушек, соединенных обмотками между собой. Их часто используют в виде фильтра для различных радиотехнических приборов, устанавливают для контроля помех в антенны и т. д.;
  4. Трансформаторы связи. Их конструктивной особенностью является то, что на одном стержне установлено от двух и более катушек. Они используются в трансформаторах для обеспечения определенной связи между отдельными компонентами устройства.

Маркировка катушек индуктивности определяется по количеству витков и цвету корпуса.

Фото – маркировка

Принцип действия

Схема работы катушек индуктивности активного действия основан на том, что каждый отдельный виток намотки пересекается с магнитными силовыми линиями. Этот электрический элемент необходим для того, чтобы извлекать электрическую энергию из источника питания и преобразовывая её сохранять в виде электрического поля. Соответственно, если ток цепи увеличивается – то расширяется и магнитное поле, но если он уменьшается – поле будет неизменно сжиматься. Эти параметры также зависят от частоты и напряжения, но в целом, действие остается неизменным. Включение элемента производит сдвиг фаз тока и напряжения.


Фото – принцип работы

Помимо этого, индуктивные (каркасные и бескаркасные) катушки обладают свойством самоиндукции, его расчет производится исходя из данных номинальной сети. В многослойной и однослойной обмотке создается напряжение, которое противоположно напряжению электрического тока. Это называется ЭДС, определение электродвижущей магнитной силы зависит от показателей индуктивности. Её можно рассчитать по закону Ома. Стоит отметить, что независимо от напряжения сети, сопротивление в катушке индуктивности не изменяется.


Фото – соединение отдельных выводов элементов

Связь индуктивности и понятия (изменения) ЭДС можно найти по формуле ε c = – dФ/dt = – L*dI/dt, где ε – это значение ЭДС самоиндукции. И если скорость изменения электрической энергии будет равна dI/dt = 1 A/c, то и L = ε c .

Видео: расчет катушки индуктивности

Вычисление

Формула – формула колебательного контура

Где L – это сам элемент, накапливающая магнитную энергию.

В это же время, период свободных колебаний этого контура вычисляется по:

Формула – период свободных колебаний

Где C – это конденсатор, реактивный элемент схемы, отдающий накапливающий электрическую энергию конкретной цепи. Величина индуктивного сопротивления в такой цепи вычисляется по X L = U/I. Здесь X – это емкостное сопротивление. При расчете резистора в пример вставляются основные параметры этого элемента.

Индуктивность соленоида определяет формула:

Формула – индуктивность катушки-соленоида

Помимо этого, уровень индуктивности имеет определенную зависимость от температуры на плате. Параллельное подключение нескольких деталей, изменение плотности и размеров витков обмотки и прочие параметры влияют на основные свойства этого элемента.

Фото – зависимость от температуры

Чтобы узнать параметры катушки индуктивности, можно использовать различные методы: измерить мультиметром, испытать на осциллографы, проверить отдельно амперметром или вольтметром. Эти варианты очень удобны тем, что в них в качестве реактивных элементов применяются конденсаторы, электропотери которых очень малы и могут не учитываться в расчетах. Иногда с целью упростить задачу применяется специальная программа расчета и измерения нужных параметров. Это позволяет значительно упростить выбор нужных элементов для схем.

Купить катушки индуктивности (SMD 150 мкГн и другие) и провода для их намотки можно в любом электротехническом магазине, их цена варьируется от 2 долларов до нескольких десятков.